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ABSTRACT

In the last two decades, a highly instrumentalist form of statistical and machine

learning has achieved an extraordinary success as the computational heart of the
phenomenon glossed as “predictive analytics,” “data mining,” or “data science.” This

instrumentalist culture of prediction emerged from subfields within applied statistics,
artificial intelligence, and database management. This essay looks at representative

developments within computational statistics and pattern recognition from the 1950s
onward, in the United States and beyond, central to the explosion of algorithms,
techniques, and epistemic values that ultimately came together in the data sciences

of today. This essay is part of a special issue entitled Histories of Data and the
Database edited by Soraya de Chadarevian and Theodore M. Porter.

KEY WORDS: computational statistics, data mining, data sciences, big data, pattern recognition,
instrumentalism, Leo Breiman

In the last two decades, a highly instrumentalist form of statistical and machine
learning has achieved an extraordinary success as the computational heart of
the phenomenon glossed as “predictive analytics,” “data mining,” or “data
science.” The current movement of data-focused computational analysis has
emerged from the loose confederating of a range of areas of inquiry focused on
data that developed through the Cold War on both sides of the Iron Curtain,
domains that have exploded in the commercial, national security, and aca-
demic worlds since the early 1990s. Over the years, investigators working in
these areas of research have made heavy use of mathematical statistics, while
breaking from the values, training, procedures, publication patterns, and
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funding of that academic field. They have equally sought to adapt algorithms
for working with complex and increasingly large real-world data sets while
reducing computational costs and delays.

Researchers in many of these areas have long prized prediction over knowl-
edge about an interpretable, causal, or mechanistic model.1 In 2001, the ren-
egade statistician Leo Breiman described “two cultures” of using statistical
models “to reach conclusions from data.” The first “assumes that the data are
generated by a given stochastic data model.” The second “uses algorithmic
models and treats the data mechanisms as unknown.”2 This essay sketches the
diverse sources of this second algorithmic culture, one stemming more from an
engineering culture of predictive utility than from a scientific culture of truth.

From the late 1940s onward, much of this work happened at the peripheries
of well-established academic disciplines, from electrical engineering to physics,
and much of it within research units heavily supported by military and intel-
ligence funding. Decades before they allowed Google to search and Amazon to
recommend, highly instrumentalist predictive algorithms running on robust
computational platforms learned to read the numbers printed on checks and
worked to discern planes and tanks in reconnaissance photos.

This instrumentalist culture of prediction has emerged from subfields
within applied statistics, artificial intelligence, and database management.3

In this short essay, I focus on the first, statistics, and look at a few represen-
tative developments in computational statistics central to the explosion of
algorithms—techniques and epistemic values that ultimately came together
in the data sciences of today. This essay focuses on topics and actors quite
distinct from the better known and, until recently, higher status fields of
artificial intelligence, expert systems, and operations research.4 The paper

1. For recent studies of cultures of prediction, see Ann Johnson, “Rational and Empirical
Cultures of Prediction,” in Mathematics as a Tool, eds. Johannes Lenhard and Martin Carrier, vol.
327 (Cham: Springer International Publishing, 2017), 23–35, https://doi.org/10.1007/978-3-319-
54469-4_2. Matthias Heymann, Gabriele Gramelsberger, and Martin Mahony, Cultures of
Prediction in Atmospheric and Climate Science: Epistemic and Cultural Shifts in Computer-Based
Modelling and Simulation (London: Routledge, 2017).

2. Leo Breiman, “Statistical Modeling: The Two Cultures,” Statistical Science 16, no. 3

(2001): 199.
3. Excluded here likewise is financial prediction, among others; for starting points, see Walter

A. Friedman, Fortune Tellers: The Story of America’s First Economic Forecasters (Princeton, NJ:
Princeton University Press, 2014).

4. For the sparsity of histories of machine learning, see Aaron Plasek, “On the Cruelty of
Really Writing a History of Machine Learning,” IEEE Annals of the History of Computing 38, no. 4
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considers first the growth, in the 1950s and 1960s, of two strands of compu-
tational statistical approaches, exploratory data analysis and pattern recogni-
tion, that focused on the increasing explosion of data during the Cold War.
The essay then discusses parallel movements outside of the United States,
before looking at the intensifying consolidation of an instrumentalist statistical
approach as central to contending with ever-expanding data sets, commercial
and governmental, from the 1990s to the present.

MATHEMATICAL STATISTICS AND ITS DISCONTENTS

In a 1962 manifesto, the Princeton-Bell Labs mathematician John Tukey called
for new approach he dubbed “data analysis” that would be dedicated as much
to discovery as to confirmation:

Data analysis, and the parts of statistics which adhere to it, must then take on
the characteristics of a science rather than those of mathematics, specifically:

(1) Data analysis must seek for scope and usefulness rather than security.
(2) Data analysis must be willing to err moderately often in order that

inadequate evidence shall more often suggest the right answer.
(3) Data analysis must use mathematical argument and mathematical re-

sults as bases for judgment rather than as bases for proofs or stamps of
validity.5

As a scientific practice, Tukey continued, data analysis is an art, not a log-
ically closed discipline. Tukey was crystallizing an alternate approach to aca-
demic statistics, one that used the mathematical power of statistical thinking
for exploratory as much as confirmatory purposes, and one that might be
applicable to observed data, not exclusively to experimental data produced
as part of an experimental trial. Thanks to “war problems” in the 1940s, Tukey
explained in an interview, “it was natural to regard statistics as something that
had the purpose of being used on data—maybe not directly, but at most at
some remove. Now, I can’t believe that other people who had practical expe-
rience failed to have this view, but they certainly—I would say—failed to
-

(Dec 2016): 6–8, https://doi.org/10.1109/MAHC.2016.43. For new histories of artificial intelli-
gence, see Stephanie Dick, “Of Models and Machines: Implementing Bounded Rationality,” Isis
106, no. 3 (2015): 623–34.

5. John W. Tukey, “The Future of Data Analysis,” Annals of Mathematical Statistics, no. 1

(Mar 1962): 1–67, on 6; https://doi.org/10.1214/aoms/1177704711.
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advertise it.”6 Indeed, thanks to the support of Mina Rees and the efforts of the
statistician Harold Hotelling and others, the great successes of highly applied
statistics during WWII were channeled into financial and symbolic support for
the creation of a mathematically focused, theoretical statistics in the United
States and in Europe, rather than a more practically oriented, data-focused
statistics.7 Before long, in the eyes of critics such as Tukey, practical data
collection and analysis were sacrificed at the altar of mathematical sophistica-
tion and rigor. Tukey and other critics complained that relatively few within
academic mathematical statistics and its allied branches, such as econometrics,
celebrated the practical cultivation of data analysis and forms of judgment as
a central endeavor. Data analysis flourished elsewhere, in the penumbra of
mathematical statistics and other well-established disciplines, in corporate
research labs and engineering departments, under various names.

PATTERN RECOGNITION

In the early 1960s, engineers at Philco, newly a division of Ford Motors,
worked under contract with the U.S. Army on technological means to aid the
military in the automated recognition of features in photos. Among the bevy of
technologies the Army supported, at least one group was using computational
statistics to aid classification.8 In just such commercial and academic labs
funded by the U.S. military and intelligence agencies did forms of computa-
tional statistics focused more on predictions based on data and less on the
confirmation of causal hypotheses flourish. Researchers such as the Philco
engineers working within the broad rubric of “pattern recognition” sought
techniques to discriminate among objects, estimating parameters for known
distributions, and hardest of all, to begin the tough task of discerning

6. Luisa T. Fernholz et al., “A Conversation with John W. Tukey and Elizabeth Tukey,”
Statistical Science (2000): 80–81.

7. Patti W. Hunter, “Drawing the Boundaries: Mathematical Statistics in 20th-Century
America,” Historia Mathematica 23, no. 1 (1996): 7–30. For nuanced treatments of wartime
developments see, e.g., Judy L. Klein, “Economics for a Client: The Case of Statistical Quality
Control and Sequential Analysis,” History of Political Economy 32, Suppl. no. 1 (2000): 25–70.
More broadly, see T. Dryer, “Algorithms under the Reign of Probability,” IEEE Annals of the
History of Computing 40, no. 1 (Jan 2018): 93–96, https://doi.org/10.1109/MAHC.2018.012171275.

8. T. Harley, J. Bryan, and L. Kanal, “Semi-Automatic Imagery Screening Research Study
and Experimental Investigation,” Philco Advanced Technology Laboratory, Blue Bell, PA, 29

Mar 1963.
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probability distributions when their underlying form cannot be assumed.9

They worked at government labs, at corporate labs, and at universities such
as Cornell, U.S.C., and Stanford, typically with copious military support.10

Although these efforts began in some cases with special purpose physical
machines to perform classification, researchers increasingly made digital com-
puters applying statistical methods more central. When they surveyed the field
in the 1960s and early 1970s, researchers explained that pattern recognition
involved less an academic discipline than a cluster of like-minded practitioners
oriented around common sets of goals. The neural network idea of the per-
ceptron is perhaps the best known of these efforts. By the late 1960s, most
researchers in pattern recognition ultimately cared little whether neural net-
works in any way replicated human cognition; the networks were tools for
prediction, not means for understanding the brain: “Whatever success we have
had [has] been the result of an effective transformation of a perception-
recognition problem into a classification problem.”11

In the course of this work, early forms of many of the key algorithms now
central to the contemporary data sciences emerged; researchers modified these
algorithms to work within the computational limits of their times on dirty, real-
world data sets. “Practical considerations of computer economics often prevent
the wholesale application of the methods mentioned above to real-life
situations.” Such situations require “somewhat undignified and haphazard ma-
nipulation . . . to render the problem amenable to orderly solution,” including
“preprocessing, filtering or prefiltering, feature or measurement extraction, or
dimensionality reduction.”12 Techniques for handling troublesome data in
existing hardware were integral, not ancillary, to pattern recognition in practice.

The need for large-scale data storage became apparent soon after the Second
World War within the American intelligence community. While supporting
IBM’s development of larger data storage, the National Security Agency orga-
nized key early conferences to encourage the development of robust database

9. Nils J. Nilsson, The Quest for Artificial Intelligence: A History of Ideas and Achievements
(Cambridge; New York: Cambridge University Press, 2010), ch. 4.

10. For the importance of this gray area of research between government and academia, see
Joy Rohde, Armed with Expertise: The Militarization of American Social Research during the Cold
War (Ithaca, NY: Cornell University Press, 2013).

11. Laveen N. Kanal, “Preface,” in Pattern Recognition, ed. Laveen N. Kanal (Washington,
DC: Thompson Book Co., 1968), xi.

12. G. Nagy, “State of the Art in Pattern Recognition,” Proceedings of the IEEE 56, no. 5 (May
1968): 836, https://doi.org/10.1109/PROC.1968.6414.
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solutions. Starting with the data from airplane reservation systems in the 1960s,
industry began accumulating data about customers at a rapidly accelerating
rate. Much of the interesting data is “big” in two different ways: it involves
observations about, say, a large number of people or a large number of pur-
chases; and it involves, for each one of those observations, a large number of
variables. The last point—called the “high-dimensionality” of data—involved
major mathematical and computational work, far from trivial, but as often
distant from the concerns of academic statisticians.

DATA-FOCUSED STATISTICS OUTSIDE THE UNITED STATES

Data-driven computational statistics developed in tension with mathematical
statistics outside the Anglophone world. In France, J.-P. Benzécri created
a powerful school of “analyse des données” focused on more powerful explor-
atory and descriptive statistics using computers. “The progress of the ‘analyse
des données’ due to computers,” he wrote, “will not continue without upsetting
all of statistics.”13 In Japan, Hayashi Chikiō developed a set of practices he
named Deta no Kagaku, the “Science of Data,” as an alternative to mathematical
statistics, which he described as “good-for-nothing and not understandable.”14

Developments in the Soviet Union were probably of the most consequence
to the recent history of machine learning and computational statistics. In
2006, the machine-learning specialist Vladimir Vapnik explained the revolu-
tionary transformation of computer learning in the Soviet Union. In the
statistical approach dominant in the middle of the twentieth century, he
detailed, a “generative model of induction” predominated, where “an under-
standing of how data are generated reflects an understanding of the corre-
sponding law of nature.” In data sets with high numbers of dimensions, such
approaches turned out to fail. In their place Vapnik and like-minded collea-
gues created “the predictive (discriminative) models of induction.” In such an
approach, “they are just looking for a function that explains the data best.”15

13. See Alain Desrosières, Prouver et gouverner: une analyse politique des statistiques publiques
(Paris: Découverte, 2014), ch. 9.

14. Hayashi Chikiō, in C. Hayashi and M. Takahashi, “Kagakusi to Kagakusha: Hayashi
Chikiosi Kōkai Intabyu,” Kōdō Keiryōgaku 31, no. 2 (2004): 107–24, quoted and translated in
Joonwoo Son, “Data Science in Japan” (unpublished ms., May 2016), 1.

15. Vladimir Naumovich Vapnik, Estimation of Dependences Based on Empirical Data (1982);
Empirical Inference Science: Afterword of 2006, 2nd ed. (New York: Springer, 2006), 415.
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In terms of the philosophy of science, he explained, the generative approach is
realist, and the predictive one, instrumentalist. This instrumental approach,
moreover, “played a crucial role in the success that pattern recognition tech-
nology has achieved.”16

Although he spent much of his later career in the United States at Bell Labs,
Vapnik came to this instrumentalist approach, and the high-dimensional data
sets, as a member of the Institute for Control Science of the Academy of
Sciences of the U.S.S.R. in the 1960s and 1970s.17 The Institute allowed the
flourishing of a highly computationally focused learning approach using data
of large size and dimensionality. In the U.S.S.R. as in the United States,
pattern recognition researchers understood themselves as distant from the
ambitions and rigors of symbolic artificial intelligence and classical academic
statistics, even as they drew heavily upon practices and ideas from both.18

The U.S. and Soviet strands came together at Bell Labs in the 1990s. The
technique most associated with Vapnik, Support Vector Machines, came to
fruition in a remarkable collaboration there, where he joined forces with the
French neural net researcher Isabella Guyon, among many others. Like other
major examples of development in the computational data sciences, Vapnik
worked under the imperative of contending with high-dimensional data within
a funding regime supporting it, and without the necessity of producing sym-
bolic artificial intelligence or causal models.19

BEYOND PATTERN RECOGNITION: BREIMAN AND

THE DEVELOPMENT OF DECISION TREES

In the 1970s, Leo Breiman was trying to predict Los Angeles pollution patterns
for the Environmental Protection Agency and to discern ship profiles for what
he termed “spook agencies” using large amounts of high-dimensional data. In

16. Ibid., 417.
17. See “History of the Institute | JQU PAH,” http://www.ipu.ru/en/node/12744 (accessed

7 Jul 2017).
18. See the discussion in Ya.Z. Tsypkin, ed., “Adaptation and Learning,” 44–75, on 4, ch. 3 in

Adaptation and Learning in Automatic Systems, vol. 73 of Mathematics in Science and Engineering
(Elsevier, 1971), https://doi.org/10.1016/S0076-5392(08)62696-X.

19. On the importance of this Soviet work, see Léon Bottou, “In Hindsight: Doklady
Akademii Nauk SSSR, 181 (4), 1968,” in Empirical Inference, eds. B. Schölkopf, Z. Luo, and V.
Vovk (Berlin, Heidelberg: Springer, 2013), 3–5, http://link.springer.com/chapter/10.1007/978-
3-642-41136-6_1.
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the 2000s, he published his two-cultures manifesto calling for academic sta-
tisticians to drop their insistence on data models and develop tools more suited
to the complexities of real-world data. In the interim, he had become a key
progenitor of a family of algorithms called decision trees and a development of
them he christened “random forests” that as of 2018 is among the most pre-
dictive and, it appears, widely used of all machine-learning algorithms.

In his consulting work, Breiman found himself wanting to draw upon the
complexity of his data sets without having to reduce their dimensionality. “In
the usual pattern recognition approach,” he and a colleague explained, the
usual algorithms “give a one gulp answer” that requires a “drastic reduction in
dimensionality . . . to make the sample size sufficiently dense in the space to
define the problem and to make it computationally feasible.”20 Reduction was
a one-way street: “The loss in information is irrevocable.”21

In tandem with several other researchers working around the same moment,
Breiman came to celebrate decision trees as superior to existing pattern recog-
nition techniques. The excitement of trees for him was that they dealt with
large amounts of data piecemeal, not all at once.22 The algorithm leveraged,
rather than reduced, the high-dimensional real-world data.

DATA MINING IN THE 1990S: PATTERN RECOGNITION APPLIED

AND REBRANDED

By the late 1980s, the tools for analyzing this stored business data came to be
seen as increasingly inadequate. Similar stories held true with scientific, mil-
itary, and intelligence data. In 1998, amid the blossoming of large-scale cor-
porate, government, and academic “data warehouses,” a key researcher
explained, “A large data store today, in practice, is not very far from being
a grand, write-only, data tomb.”23 Much needed to be done.

The movement known as “data mining” emerged in the early 1990s to
make sense of the rapidly growing untapped stores of corporate and scientific

20. William S. Meisel and Leo Breiman, “Topics in the Analysis and Optimization of
Complex Systems. Appendix B. Tree Structured Classification Methods,” Final report to AFOSR
(Technology Service Corporation, 28 Feb 1977), 4, http://www.dtic.mil/dtic/tr/fulltext/u2/
a038209.pdf.

21. Ibid.
22. Ibid.
23. Usama Fayyad, “Mining Databases: Towards Algorithms for Knowledge Discovery,”

Bulletin of the Technical Committee on Data Engineering 21, no. 1 (1998): 48.
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data using the tools produced in pattern recognition research, other artificial
intelligence approaches, and applied computational statistical work, such as
the work of Breiman and Tukey. Data mining, or more formally, Knowledge
Discovery in Databases (KDD), is the activity of creating non-trivial knowl-
edge suitable for action from databases of vast size and dimensionality.24

Data mining concerns databases of very large size—millions or billions of
records, usually with elements of high dimensionality. Performing reasonably
fast analyses of high-dimensional, messy, real-world data is central to the
identity and purpose of data mining, even more so than in pattern recogni-
tion. Sophisticated statistical and machine learning algorithms were typically
devised for sets of data that can easily fit in memory, or that require a rela-
tively small use of slower disk access. Adapting such algorithms to huge
quantities of data that cannot be held in memory is non-trivial.25 With some
key exceptions, such as Breiman, theoretically oriented practitioners did not
focus upon this computational challenge; other business and scientific com-
munities made it a central concern.26

STATISTICAL MODERNIZATION

In the late 1970s, a small but steadily increasing number of computationally
minded statisticians called for their field to more fully embrace the possibilities
the digital computer afforded, in graduate training as well in the understanding
of what comprised good science. In 1979, Stanford statistician Bradley Efron
called for his colleagues to recognize that computers had dramatically trans-
formed what constituted “simple” in a theory. The computer, he argued, “has
redefined ‘simple’ in the mathematical sciences.” Mathematics correspond-
ingly had to shift. The avalanche of data would require “a blend of traditional
mathematical thinking combined with the numerical and organizational

24. Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth, “From Data Mining
to Knowledge Discovery: An Overview,” in Advances in Knowledge Discovery and Data Mining
(Menlo Park, CA: AAAI/MIT Press, 1996), 1–34.

25. Compare computation and data friction as discussed in Paul Edwards, A Vast Machine:
Computer Models, Climate Data, and the Politics of Global Warming (Cambridge, MA: MIT
Press, 2010).

26. Matthew L. Jones, “Querying the Archive: Database Mining from Apriori to Page-Rank,”
in Science in the Archives: Pasts, Presents, Futures, ed. Lorraine Daston (Chicago: Chicago Uni-
versity Press, 2016), 311–28.
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aptitude of the computer.”27 Soviet scholars had made much the same point in
the early 1970s.

Practitioners such as Breiman, Efron, and Bell Labs’ William Cleveland
argued that academic statisticians had failed to face up to large real-world data
sets and to integrate computing more centrally within their understanding of
the field. In a 1993 call for a “greater statistics” that would learn from data, John
Chambers of Bell Labs worried that the overly insular mathematical drive of
statistics was “limiting both the influence of statistics and the benefits the field
had provided to society.”28 In 2002, the U.S. National Science Foundation
funded a workshop on the future of statistics that led to calls for a dramatic
transformation of the discipline to retain its centrality amid the explosion of
data and the threat of competitor disciplines focused on analyzing data.29 The
explosion of data had created the opportunity for statistics to serve an essential
regulatory function, but the field as a whole was failing to seize the opportu-
nity. Responding to the report, two major computationally oriented statisti-
cians, Walter Stuetzel and David Madigan, called for an upending of graduate
education in their field: “Statistics as a discipline exists to develop tools for
analyzing data. As such, statistics is an engineering discipline and meth-
odology.” Curricula remained old-fashioned, too mathematical.

Statistics has primarily focused on squeezing the maximum amount of
information out of limited data. This paradigm is rapidly diminishing in
importance and statistics education finds itself out of step with reality.30

Breiman was more blunt: the NSF report “denigrates the way that the most
important advances in statistics have occurred—not by introspection, but
involvement in challenging problems suggested by different disciplines.” The
report, he explained, “is a step into the past . . . ,” back into a mathematically
solipsistic dark age.31

27. Bradley Efron, “Computers and the Theory of Statistics: Thinking the Unthinkable,”
SIAM Review 21, no. 4 (1979): 480.

28. John M. Chambers, “Greater or Lesser Statistics: A Choice for Future Research,” Statistics
and Computing 3, no. 4 (1993): 182.

29. Bruce G. Lindsay, Jon Kettenring, and David O. Siegmund, “Statistics: Challenges and
Opportunities for the Twenty-First Century,” 20 Jun 2003, https://web.archive.org/web/
20040707164725/http://www.stat.psu.edu:80/~bgl/nsf_report.pdf.

30. David Madigan and Werner Stuetzle, “[A Report on the Future of Statistics]: Comment,”
Statistical Science 19, no. 3 (2004): 408.

31. Leo Breiman, “[A Report on the Future of Statistics]: Comment,” Statistical Science 19, no.
3 (2004): 411.
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ENSEMBLE MODELING AND THE PREDICTIVE ETHOS

By the late 1990s, a growing literature began to show, Leo Breiman argued, that
“combining a multiple set of predictors, all constructed using the same data, can
lead to dramatic decreases in test error.” This predictive success came at great
cost. “At the end of the day, what we are left with is an almost inscrutable
prediction function combining many different predictors. But the resulting
predictor can be quite accurate.”32 Despite their epistemologically questionable
status, such inscrutable combinations predict better. A bevy of techniques with
snappy names emerged to create such ensembles: bagging, boosting, arcing, etc.

The predictive gains were massive, and to an increasing number of practi-
tioners among different scientific, intelligence, and business domains, these
gains have come to overshadow the massive opacity of the predictive ensem-
ble generated. Increasingly, practitioners have abandoned using any one fam-
ily of predictive models in favor of combining many different predictors, most
famously exemplified in the victor of the Netflix Prize in 2009. This dramatic
success of ensembles amplified the ethic of prediction over interpretation.
A generation ago, the inscrutability of neural nets made them deeply prob-
lematic; the renaissance of neural networks from around 2012 rests squarely
on the legitimation of such ensemble models, for commerce, for spooks, and
for science.33

SCIENCES OF THE PARTICULAR

For at least three decades, professional historians of science have pushed
against a vision of science modeled on theoretical physics; we now celebrate
the diverse forms of knowledge focused on the careful empirical study of
particular things. Exponents of data-focused computational science have a sur-
prisingly similar evolution. Just as history of science embraced the study of the
particular as it disconnected from a Cold War prioritizing of theory, the data
sciences moved beyond the aggregates of mathematical statistics to draw
upon granular data sets to characterize particular things—individual people,
diseases, films. In a key manifesto celebrating the “unreasonable effectiveness

32. Leo Breiman and Nong Shang, “Born Again Trees,” University of California, Berkeley,
Berkeley, CA, Technical Report, 1996.

33. For resistance to this instrumentalist focus, see the remarkable Judea Pearl, Causality:
Models, Reasoning, and Inference (Cambridge: Cambridge University Press, 2000).
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of data,” three Google researchers argued in terms that echo humanist denun-
ciations of reductionist knowledge: “sciences that involve human beings rather
than elementary particles have proven more resistant to elegant mathematics.”
Something else is needed. “Perhaps when it comes to natural language proces-
sing and related fields, we’re doomed to complex theories that will never have
the elegance of physics equations. But if that’s so, we should . . . embrace
complexity and make use of the best ally we have: the unreasonable effective-
ness of data.”34

Much of the promise of the data sciences, whether in medicine, marketing,
or getting out the vote, ostensibly comes from overcoming older theory-laden
categorizations to characterize individuals in their specificity, all in order to
predict their behavior. This positivism has, unsurprisingly, resulted in new
algorithmic processes strengthening traditional categories of racial, sexual, and
class discrimination.35 The long-fought humanist desire to focus on the indi-
vidual has, in a most peculiar turnabout, encountered perhaps the most pow-
erful system of manipulating human emotions at scale the world has yet seen.
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34. A. Halevy, P. Norvig, and F. Pereira, “The Unreasonable Effectiveness of Data,” Intel-
ligent Systems, IEEE 24, no. 2 (April 2009): 8–12, https://doi.org/10.1109/MIS.2009.36.

35. See recently Safiya Umoja Noble, Algorithms of Oppression: How Search Engines Reinforce
Racism (New York: New York University Press, 2018).
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